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I. Introduction 
 
It has now become common practice to convert text, sound, images, and even videos into digital 
libraries. As these digital libraries from different resources are communicated and shared across 
computer networks, an important problem arises: how to efficiently interpret and extract useful 
information from the massive data for different users. Efficient content-based similarity retrieval 
in large image databases gains considerable research attention as an important functionality for 
many applications.  
 
There are at least the following three problems to solve for developing a complete content-based 
image retrieval system: 1) A robust feature space should be selected to represent the visual 
appearance of images; 2) Some appropriate similarity/distance measure should be defined 
between images in this selected feature space; 3) An indexing and retrieval scheme is necessary 
to speed up similarity retrieval on large size image databases. 
 
Images always contain much more information than text. But how to represent visual information 
presented in images in digital format is a problem. If the visual content of images can be fully 
captured by computers, we will have a flexible and intelligent image retrieval system. But the 
representations of images are complex and the procedure of extracting the representations from 
images are time consuming. There will be always a trade-off between the information we want to 
extract, which determines image retrieval capabilities, and the model complexity of feature 
representation, which affects the time required for the extraction procedure and later the similarity 
search. The computer vision community is still focusing on this image understanding problem. 
But still, we are not at the stage to provide a genuine solution. Therefore, most CBIR systems still 
rely on lower level, computationally attainable image features (colors, textures, shapes of objects 
in images, etc.) to measure the similarities between images.  
 
Most current CBIR systems still use exhaustive, sequential search for similarity search. This is 
definitely not efficient as the size of image database increases. An efficient indexing structure 
will support the development of an effective image database. But most feature spaces we select 
are high dimensional spaces, where the retrieval performance of indexing structures could even 
be worse than the exhaustive search if the data is uniformly distributed. This phenomenon is 
known as the “ curse of dimensionality”.  
 
In this paper, we concentrate on indexing spine X-ray images in the NHANES II data set. In these 
images, the most dominant visual information is shape. It is known that some shape features are 
crucial for clinical diagnosis for related diseases. For example, in Figure 1, we showed a cervical 
vertebra with a lower anterior osteophyte, which is significant to osteoarthritis researchers. Before 
we find the shape representations, we first need to extract contours of organs or abnormal regions 
presented in medical images. Thus, we obtain a collection of boundary points recorded as a 
sequence of x and y coordinates.  Applying shape space theory, we can measure the rotation, 
translation, scaling, and starting point shift invariant distance between shapes and develop an 



 
 
 
 
 
 
 
Figure 2. Expert landmarks

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. A cervical vertebrate 
with anterior osteophyte 

efficient indexing tree to support content-based similarity retrieval. Eventually, such systems may 
become significant tools in the clinical diagnosis of 
human back pain. Research shows that the shape 
distribution in shape space is the main factor affecting the 
retrieval performance of our indexing tree. If our shapes 
are uniformly distributed in shape space, our retrieval 
performance would be severely constrained by the curse 
of dimensionality. Fortunately, similarity retrieval on our 
indexing tree is always more efficient than doing a 
sequential search since the vertebral shapes in our 
database is non-uniformly distributed and have low 
intrinsic dimension.  
 
In the following, each step of our shape indexing 
technique is described in detail.   
 
II.  Modified Active Contour Segmentation of 

spine X-ray images 
 

We first need to extract shape information from spine X-ray images, which generally have low 
contrast and low image quality. To achieve this, we developed a dynamic programming algorithm 
for the extraction of vertebral contours. The algorithm integrates 
prior shape information, given by a small number of expert 
landmarks (Figure 2), into the active contour segmentation 
(ACS) framework. The procedure of extracting vertebral 
contours in X-ray images, consisting of feature detection, 
dynamic programming searching and later user validation and 
visualization, has been streamlined and automated. 
 
Active Contour Segmentation deforms an a priori curve to find 
the optimal contour which minimizes an objective function, consisting of external energy and 
internal energy terms: 

where c is the deformed contour, cprior is the prior shape information and the w’s are appropriate 
weights for the respective energy terms. It is time consuming to find the optimal contour if the 
size of image is large. Therefore, we constrain our contour search grid to orthogonal curves as 
suggested in [1]. By writing the above energy function in a discrete form, we find that the net 
energy on one sample point along the deformed curve is computable by using only its 
neighboring sample points. Therefore, we can speed the minimizing procedure by dynamic 
programming. We will give some segmentation results in section V. 

 
III. Shape Space 
 
Shape in this paper is defined as the geometric information after removing translation, rotation, 
scaling effects. Given a set of m landmarks extracted from a contour, with the contour being in p 
dimensional space, we treat the set as a matrix pmX . The “shape set”, a set of sets of landmarks 
with the same shape, is generated by translation, rotation and scaling. With this abstraction, we 
define a shape as the shape set: { })}(,R tR,s t,X{s p pSORRS ∈∈∈+== .  
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Since any polygon (such as a set of landmarks) is represented by a matrix, we can remove the 
translation factor by moving the origin to the mass center of the polygon. This can be realized by 
pre-multiplying by a Helmert matrix [4]. We can then remove the scaling factor by normalization. 
After these two steps, we obtain the so-called pre-shape space. This pre-shape space is actually 
the orbit space of the configurations of m landmarks in pR  under the action of translation and 
scaling. Its dimension is 1)1( −− mp  and it can be considered as a sphere. Finally, we need to 
remove the rotation information to get the shape. In order to do that, we identify all rotated 
versions of the pre-shape with each other. The shape space now is the space of orbits on the pre-
shape space and its dimension is 
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well defined complex projective space 22 −mCP , which is not an ordinary Euclidean space. 
 
After having a rough idea of what the shape space is, we need to further explore how to define the 
distance between two shapes. For our vertebra, we consider p=2.The problem to calculate the 
distance between two 2-D shapes is formulated as a complex linear regression problem. If m 
landmarks are used to represent the object contour, the contour becomes the complex vector 

T
mm jyxjyxjyxC ],,,[ 2211 +++= K , where ),( ii yx  is the ith coordinate for one landmark 

on the contour. Thus the problem can be written as following: 
( ) ( )1221 inf, CCCCd F Γ−=
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where 1C  and 2C  are the m-D complex vectors representing contours of m points; 
( ) C,,11 ∈+=Γ ttCC λλ . ( )1CΓ  represents translating, rotating and scaling the contour 1C . 

We can therefore define the shape as a set of all the possible contours represented by ( )1CΓ . The 
distance we obtained is called full Procrustes distance and has closed form [4]: 
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conjugate of jz2 . The Procrustes distance )sin( Fda=ρ  is used in our spine image database 
application described later and is easy to compute. The Procrustes distance is actually a 
Riemannian metric in shape space, which in fact is the well-known Fubini-Study metric in classic 
geometry. This distance can also be considered as the geodesic distance between shapes in shape 
space. It is also provable that we can find a starting point invariant distance metric based on this 
Procrustes distance. 
 
IV. High Dimensional Indexing 
 
Our vertebral shape database supports both range query and k nearest neighbor (k-NN) query. 
Given a query shape q, we want to retrieve all the "similar" vertebral shapes from a data set 
embedded in shape space. Before defining the query problem, we first need to have a 
mathematical metric d(,) to measure the distance or similarity between two shapes. We use the 
Procrustes distance.  
 
(Radius-)range query retrieves data points within distance Tr  to the query example q: 

},),(|{ DBurqudu T ∈< . 
The k-NN query finds k closest data points to q in the database, that is, 

},,\),,(),(|{ kADBAADBxqxdqudAu ii =⊂∈∀<∈ . 
 



Figure 3. (a) A generated orthogonal search grid; (b) A segmentation of cervical vertebrate; (c) A 
segmentation of lumbar vertebrate 
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Since shape space is not an ordinary Euclidean space, only indexing trees in metric spaces can be 
applied to index shapes in shape space. We use the agglomerative cluster tree in our experiments. 
The indexing problem can be considered as the problem of organizing a data set DB with size n in 
shape space. The data set will be organized hierarchically for storage; later desired data may be 
efficiently retrieved. The objective of using indexing trees is to retrieve desired data with retrieval 
time sub-linear to n. The procedure of the range query on indexing trees traverses the tree from 
the root to the leaf nodes by node test, which evaluates the lower bound of the distance from the 
data points contained in the intermediate nodes to the query example q and compares it to Tr . By 
the triangle inequality of our shape distance metric, we are able to find all the points satisfying the 
query. If the lower bound is greater than the threshold Tr , this node cannot contain any points 
satisfying the query, and consequently the sub-tree rooted at this node need not be searched 
further. If the lower bound calculated by the node test is less than or equal to Tr , the subset 
represented by the node may contain points that satisfy the query and must be explored further. 
The number of node tests required for the retrieval can be used to evaluate the retrieval 
efficiency. In high dimensional spaces, the expected nearest neighbor distance increases and the 
variance of distances is very small. Hence, those intermediate nodes of indexing trees will have 
high probability of passing the node tests for given queries. However, we have experimentally 
determined that our vertebral shapes are not uniformly distributed. The intrinsic dimension of 
vertebral shapes is much lower than the external dimension of shape space. Hence, using our 
shape indexing tree, the similarity retrieval is still more efficient than doing sequential search.  
 
Since we needed a C program for shape indexing to efficiently handle indexing data structures, 
we needed to find a way of interfacing it to our MATLAB CBIR package. To accomplish this, we 
wrote two MEX wrappers for constructing the indexing tree and for similarity retrieval, 
respectively. We also needed one “gateway function” for maintaining the C data structure in 
memory during program execution. The related technical report can be requested from CEB. 
 
V.  Results 
A. Shape Extraction 
We improved the previously-implemented ACS algorithm by generating a new search grid, with 
better geometry to avoid segmentation problems at corners of vertebrae. We generated the 
contour search grid by solving 2 partial differential equations using the method described in [1]. 
After a conformal map, we can get an “orthogonal search grid” (orthogonal curves) for the 
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Figure 4. Sketch of modified CBIR package

contour search space in the ACS algorithm. We currently use 9 expert landmarks to construct the 
initial templates and search grids for all images. Figure 3 shows a generated orthogonal search 
grid and two segmentation examples for both cervical and lumbar images. We also implemented 
a GUI to use several representative templates and the corresponding search grids to speed the 
segmentation procedure.  (Also, we haven’t pre-processed the X-ray images before the 
segmentation. Integrating image enhancement is expected to improve segmentation results. ) 
 
B. Modified CBIR Package 
 
The CBIR software has a MySQL database to store the available NHANES II data set. We 
integrated two C applications for shape indexing and used a gateway function to maintain the 
indexing tree in memory for the similarity retrieval. Current CBIR software now supports both 
text queries and shape queries. These are applied separately since they are in different logical 
spaces. The system will be more efficient if we can find a seamless way to integrate them. 
 
We also developed Graphic User Interfaces in MATLAB to support shape queries. Using this 
GUI, we output similar images (vertebral shapes) together with the user-required text information 
retrieved from the MySQL database. 

 

C. Accuracy of Shape Indexing 
 
We did several experiments for testing the accuracy of our shape indexing technique. 34 sample 
points were used to represent vertebral shapes in the following experiments. We provide one set 
of 10-NN query results in Figure 5. Most of the 10 images retrieved are similar to the query 
example. With one exception all of the retrieved shapes are lumbar vertebrae, like the query 
example. This indicates that our shape distance is a good discriminator for the global difference 
between cervical and lumbar vertebrae. 

users



Figure 6. Sequential comparison between database shapes and query shape: (a) 2-NN in figure 5; 
(b) 3-NN in figure 5; (c) 4-NN in figure 5
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Figure 5. 10-NN results: (a) Query shape and 1-NN (d = 0); (b) 2-NN (d = 0.073); (c) 3-NN (d = 
0.08); (d) 4-NN (d = 0.082); (e) 5-NN (d = 0.083); (f) 6-NN (d = 0.087); (g) 7-NN (d = 0.088); (h) 
8-NN (d = 0.089); (i) 9-NN (d = 0.0898); (j) 10-NN (d = 0.0901) 

 
By sequentially aligning and comparing every shape in the database with the query example after 
alignment, we found that ranking of results obtained with our indexing tree is geometrically 
correct (Figure 6). This was predicated, since our distance measure is a metric. However, 
perceptually, the user might not be satisfied with these results. For example, the user might be 
interested in finding osteophytes in the images in Figure 5 and may not be happy with the last two 
images. This is because our shape distance still only measures the difference of global shape 

properties. We suggest those improvements to the system: First, improve the correspondence 
between segments of different contours after segmentation. Second, let user be able to adapt the 
distance measure according to his specific criteria for the similarity retrieval. For instance, using 
partial shape matching, which only considers matching the (user-defined) interesting parts of 
different shapes, will surely produce retrievals more satisfying to the user. 
 

 
D. Efficiency of Shape Indexing 
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Table 1. Efficiency of shape indexing tree (CPU cost and number of disk accesses) 

For testing efficiency of our shape indexing tree, we measured the average number of node tests 
and average number of candidate leaf nodes. These are related, respectively, to the CPU distance 
calculation time and the number of disk accesses. In this example, we have 1298 shapes in our 
database. We tested several 13-NN and 40-NN queries to get the average numbers. We found that 
the numbers obtained are lower than if we did sequential search. We also tested two databases 
with different sizes and found that the indexing tree performance appears to scale up well with the 
size of database. 
 

1298 shapes Efficiency 
k-NN (k) Average number of node tests Average number of candidate 

leaf nodes (disk accesses) 
13 996.5  (linear search: 1298) 176  (linear search: 1298) 
40 1250.5  (linear search: 1298) 315.25  (linear search: 1298) 

 
From the results, we believe that the intrinsic dimension of shape distribution is not very high. 
Recall that every vertebral contour is represented by 34 sample points; therefore the dimension of 
our shape space is 64. Considering “the curse”, search with our indexing tree will definitely be 
worse than sequential search if the shapes are uniformly distributed. However, our results show 
that the search using our tree is better than linear, i.e. better than sequential search. Based on this 
observation, we can further improve our indexing technique by considering the clustering 
property of shapes. Also, if we apply the tree adaptation procedure given in [5], the number in the 
first column can be further reduced. In that case, our shape indexing will be always better than 
linear search. 
 
VI. Conclusion and Future Work 
 
We applied shape space theory to analyze different vertebral shapes, and we applied one distance 
metric defined in shape space for constructing shape indexing tree and developing the 
corresponding similarity retrieval algorithm. Using our shape indexing tree, we showed that the 
similarity retrieval performance is always better than linear search.  
 
There are still many issues we could pursue. First, an implicit assumption for using shape space 
theory is that we have a one-to-one correspondence between sample points along different 
vertebral contours. But in practice, it is not easy to find the correct correspondence between those 
sample points, and solving the correspondence problem is time consuming. Integrating a 
correspondence invariant distance measure in shape indexing is a potential new research project. 
Second, partial shape matching could be useful for user-adaptive similarity retrieval. But for 
retrieval efficiency, we need to find the efficient indexing method for partial shapes. We have 
recently derived a weighted Procrustes distance metric, and we are still researching an appropriate 
indexing technique.  
 
For spine X-ray images, other features like disk space narrowing and subluxation are also 
important for clinical use. Those features are more closely related to spatial relationship between 
multiple vertebrae in images. To CBIR to these features, it is crucial to extract and represent the 
corresponding shape information and develop an effective retrieval algorithm using an adaptive 
similarity measure.  
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